Tomsk State Pedagogical University Bulletin
RU EN






Today: 22.05.2025
Home Issues 2017 Year Issue №4 SYSTEMS OF COMPUTER MATHEMATICS AND SOME QUESTIONS OF TEACHING THERMODYNAMICS AND STATISTICAL PHYSICS
  • Home
  • Current Issue
  • Bulletin Archive
    • 2025 Year
      • Issue №1
      • Issue №2
      • Issue №3
    • 2024 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2023 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2022 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2021 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2020 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2019 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
    • 2018 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
    • 2017 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2016 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2015 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2014 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2013 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
      • Issue №13
    • 2012 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
      • Issue №13
    • 2011 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
      • Issue №13
    • 2010 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2009 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2008 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
    • 2007 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
    • 2006 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2005 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
    • 2004 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
    • 2003 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
    • 2002 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
    • 2001 Year
      • Issue №1
      • Issue №2
      • Issue №3
    • 2000 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
    • 1999 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
    • 1998 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 1997 Year
      • Issue №1
      • Issue №2
      • Issue №3
  • Rating
  • Search
  • News
  • Editorial Board
  • Information for Authors
  • Review Procedure
  • Information for Readers
  • Editor’s Publisher Ethics
  • Contacts
  • Manuscript submission
  • Received articles
  • Accepted articles
  • Subscribe
  • Service Entrance
vestnik.tspu.ru
praxema.tspu.ru
ling.tspu.ru
npo.tspu.ru
edujournal.tspu.ru

TSPU Bulletin is a peer-reviewed open-access scientific journal.

E-LIBRARY (РИНЦ)
Ulrich's Periodicals Directory
Google Scholar
European reference index for the humanities and the social sciences (erih plus)
Search by Author
- Not selected -
  • - Not selected -
Яндекс.Метрика

SYSTEMS OF COMPUTER MATHEMATICS AND SOME QUESTIONS OF TEACHING THERMODYNAMICS AND STATISTICAL PHYSICS

Pipich Petr Vasilyevich

DOI: 10.23951/1609-624X-2017-4-89-95

Information About Author:

Pipich P. V., Novosibirsk State University (ul. Russian, 35, Novosibirsk, Russian Federation, 630058). E-mail pipich@ngs.ru

Computer algebra systems are now ubiquitous in all areas of science and engineering. Mathcad is one of the most successeful and widely used mathematical package. The capabilities of the mathematical package Mathcad are used to compute approximate solutions of different kinds of equations from statistical physics and thermodynamics. Solved numerically the equations in which the unknown enters under the integral sign. The presented examples are of independent interest to the students and teachers that use numerical methods. The equation of heat balance is difficult to solve when the specific heat depends on temperature and this dependence is given in the form of a table. Spline interpolation is applied to solve the heat balance equation in such a case. Debay’s theory of heat capacity of crystals well describes the temperature dependence of specific heat capacities of some substances. The Debay’s theory is used to numerically solve the heat balance equation for aluminium and copper. Distribution Fermi–Dirac can be used for calculations if the chemical potential is known. The chemical potential implicitly depends on the concentration and temperature. It is shown how to numerically calculate the chemical potential. Shows how to solve numerically and graphically an equation arising in the derivation of the Wien’s shift law. With the help of Planck’s formula determines the temperature of the stars having a maximum proportion of radiation in the visible range. Provides the problems associated with the Maxwell distribution. Without the Boltzmann distribution the pressure of the isothermal atmosphere at a specified altitude is calculated.

Keywords: computer mathematics systems, spline interpolation, numerical solution of equations, statistical distribution

References:

1. Von zur Gathen J., Gerhard J. Modern computer algebra. Cambridge, University Press, 2013. p. 808.

2. Taranchuk V. B. Osnovnye funktsii sistem komp’yuternoy algebry [The basic functions of computer algebra systems]. Minsk, BSU Publ., 2013. 59 p. (in Russian).

3. Dyakonov V. V. Entsiklopediya komp’yuternoy algebry [Encyclopedia of computer algebra]. Moscow, DMK Press Publ., 2009. 1264 p. (in Russian).

4. Gurskiy D. A. Vychisleniya v Mathcad [Calculation in Mathcad]. Minsk, Novoye znaniye Publ., 2003. 814 p. (in Russian).

5. Fizicheskiye velichiny. Spravochnik [Physical data. Reference]. Ed. by I. S. Grigor’ev, E. Z. Meylikhov. Moscow, Energoatomizdat Publ., 1991. 1232 p. (in Russian).

6. Savel’ev I. V. Kurs obshchey fi ziki [General physics]. Vol. 3. Moscow, Nauka Publ., 1979, 304 p. (in Russian).

7. Kittel Ch. Thermal Physics New York, Wiley, 1969. 418p. (Russ. Ed.: Kittel’ Ch. Statisticheskaya termodinamika. Moscow, Nauka Publ., 1977. 336 p.)

8. Greiner W., Neise L., Stocker H. Thermodynamics and statistical mechanics. New York Springer Verlag, 1995. 464 p.

9. Tipler P. A., Mosca G. Physics for scientists and engineers New York, W. H. Freeman and company, 2008. 1412 p.

10. Demtroeder W. Atoms, molecules and photons. Berlin, Springer, 2006. 572 p.

pipich_p._v._89_95_4_181_2017.pdf ( 455.24 kB ) pipich_p._v._89_95_4_181_2017.zip ( 443.06 kB )

Issue: 4, 2017

Series of issue: Issue 4

Rubric: ISSUES OF NATURAL-SCIENTIFIC EDUCATION

Pages: 89 — 95

Downloads: 1257

For citation:


© 2025 Tomsk State Pedagogical University Bulletin

Development and support: Network Project Laboratory TSPU