COMPLEX COORDINATE TRANSFORMATIONS TO GET EXACT AXIALLY SYMMETRIC SOLUTIONS IN F(R)-GRAVITY
We present a strategy to get axially symmetric solutions in f(R) gravity by starting from spherically symmetric space-times. To do so, we assume the validity of a complex coordinate transformation, which acts on the spherically symmetric metric and permits one to infer the corresponding f(R) modification. The consequences of this recipe are here described, giving particular emphasis to define a class of compatible axially symmetric solutions, which fairly well describe the motion in cylindrical geometries in the field of f(R), in two different classes of coordinates. We demonstrate that our approach is general and may be applied for several cases of interest. We also show that our treatment is compatible with the standard approach of general relativity, evaluating the motion of a freely falling particle in the context of our metric.
Keywords: complex coordinate transformations, axially symmetric solutions, f(R)-gravity
References:
[1] Capozziello S. and De Laurentis M. 2011 Phys. Rept. 509 167.
[2] Bamba K., Capozziello S., Nojiri S. and Odintsov S. D. 2012 Astrophys. Space Sci. 342 155-228.
[3] Capozziello S., De Laurentis M., Luongo O. and Ruggeri A. C. 2013 Galaxies 1 216.
[4] Multamaki T. and Vilja I. 2006 Phys. Rev. D 74 064022.
[5] Multamaki T. and Vilja I. 2007 Phys. Rev. D 76 064021.
[6] Kainulainen K., Piilonen J., Reijonen V., and Sunhede D. 2007 Phys. Rev. D 76 024020.
[7] McManus D. 1991 Class. Quant. Grav. 8 863.
[8] Kransinski A. 1978 Ann. Phys. 112 22.
[9] Newman E. T. and Janis A. I. 1965 J. Math. Phys. 6 915.
[10] Newman E. T., Couch E., Chinnapared K., Exton A., Prakash A. and Torrence R. 1965 J. Math. Phys. 6 918.
[11] Schiffer M. M., Adler R. J., Mark J. and Sheffield C. 1973 J. Math. Phys. 14 52.
[12] Capozziello S., De laurentis M. and Stabile A. 2010 Class. Quant. Grav. 27 165008.
[13] Berti E. 2014 ArXiv[gr-qc]:1410.4481.
Issue: 12, 2014
Series of issue: Issue 12
Pages: 53 — 57
Downloads: 986