ON SOME EXTREMAL PROBLEMS OF THE BEST APPROXIMATION BY ENTIRE FUNCTIONS
In this paper a number of extremal problems of approximation theory of square summable functions on the whole line R : = (–∞,+∞) by entire functions of exponential type. In the space L2(R) of the exact constants of Jackson-Stechkin type inequalities were calculated. Found There was found the upper bounds approximation of classes of functions L2(R), defined with the help of the average modulus of continuity of m-th order, where instead of the shift operator ( , ): ( ) h T f x = f x + h is used Steklov’s operator Sh ( f ). Similar smoothness characteristics for solving the extremal problems of approximation theory for periodic functions in L2[0,2π] were previously considered in the works by V. A. Abilov, F. I. Abilova, S. B. Vakarchuk, M. Sh. Shabozov and others. It is proved that the obtained results in this paper are ultimate does not approving.
Keywords: the best approximation, modulus of continuity of m-order, Jakson-Stechkin type inequality, entire function of exponential type, operator of Steklova
References:
1. Bernshteyn S. N. O nailuchshem priblizhenii nepreryvnykh funktsiy na vsey veshchestvennoy osi pri pomoshchi tselykh funktsiy dannoy stepeni [On the best approximation of continuous functions on the whole real axis by entire functions of given degree]. Sobranie sochineniy – Collected Works, vol.2. Moscow, AN SSSR Publ., 1952, pp. 371–375 (in Russian).
2. Akhiezer N. I. Lektsii po teorii approksimatsii [Lectures on the theory of approximation]. Moscow, Nauka Publ., 1965. 406 p. (in Russian).
3. Nikol'skiy S. M. Priblizhenie funktsiy mnogikh peremennykh i teoremy vlozheniya [Approximation of functions of several variables and imbedding theorems]. Moscow, Nauka Publ., 1969. 480 p. (in Russian).
4. Timan A. F. Teoriya priblizheniya funktsiy deystvitel'nogo peremennogo [Theory of approximation of functions of a real variable]. Moscow, Fizmatgiz Publ., 1960. 624 p. (in Russian).
5. Ibragimov I. I. Teoriya priblizheniya tselymi funktsiyami [Theory of approximation of entire functions]. Baku, Elm Publ., 1979. 468 p. (in Russian).
6. Ibragimov I. I., Nasibov F. G. Ob otsenke nailuchshego priblizheniya summiruemoy funktsii na veshchestvennoy osi posredstvom tselykh funktsiy konechnoy stepeni [Estimating the best approximation of summable functions on the real axis by entire functions of finite degree]. DAN SSSR, 1970, vol. 194, no. 5, pp. 1013–1016 (in Russian).
7. Popov V. Yu. O nailuchshikh srednekvadraticheskikh priblizheniyakh tselymi funktsiyami eksponentsial'nogo tipa [The best mean-square approximations by entire functions of exponential type]. Izv. Vuzov. Mathematica – Russian Mathematics (Iz. VUZ), 1972, no. 6, pp. 65–73 (in Russian).
8. Magaril-Il'yaev G. G. Srednyaya razmernost', poperechniki i optimal'noe vosstanovlenie sobolevskikh klassov funktsiy na pryamoy [Mean dimension, widths, and optimal recovery of Sobolev classes of functions on the line]. Matematicheskiy sbornik – Sbornik: Mathematics, 1991, vol. 182, no. 11, pp.1635–1656 (in Russian).
9. Magaril-Il'yaev G. G. Srednyaya razmernost' i poperechniki klassov funktsiy na pryamoy [Mean dimension and widths of classes of functions on the line]. DAN SSSR, 1991, vol. 318, no. 1, pp.35–38 (in Russian).
10. Vakarchuk S. B., Doronin V. G. Nailuchshie srednekvadraticheskie priblizheniya tselymi funktsiyami konechnoy stepeni na pryamoy i tochnye znacheniya srednikh poperechnikov funktsional'nykh klassov [The best mean-square approximation of entire functions of finite degree on the line and the exact values of the mean widths of functional classes]. Ukrainskiy matematicheskiy zhurnal – Ukrainian Mathematical Journal, 2010, vol. 62, no. 8, pp. 1032–1043 (in Russian).
11. Vakarchuk S. B. O nekotrykh ekstremal'nykh zadachakh teorii approksimatsii funktsiy na veshchestvennoy osi I [Some extreme problems in the theory of approximation of functions on real axis I]. Ukr. mat. Visnik – Ukrainian methematical bulletin, 2012, vol. 9, no. 3, pp. 401–429; II, Ukr. mat. visnik, 2012, vol.9, no. 4, pp. 578–602 (in Russian).
12. Shabozov M. Sh., Mamadov R. Nailuchshee priblizhenie tselymi funktsiyami eksponentsial'nogo tipa v L2 (R) [The best approximation of entire functions of exponential type in L2 (R)]. Vestnik Khorogskogo gosudarstvennogo universiteta – Bulletin of Khorogskiy State University, 2001, no. 4, pp. 76–81 (in Russian).
13. Shabozov M. Sh., Vakarchuk S. B., Mamadov R. O tochnykh znacheniyakh srednikh n-poperechnikov nekotorykh klassov funktsiy [On exact values of the n-widths mean of certain classes of functions]. DAN RT, 2009, vol. 52, no. 4, pp. 247–254 (in Russian).
14. Shabozov M. Sh., Yusupov G. A. O tochnykh znacheniyakh srednikh n-poperechnikov nekotorykh klassov tselykh funktsiy [On exact values of the n-widths mean of certain classes of entire functions]. Trudy instituta matematiki i mekhaniki UrO RAN – Proceedings of Inst. Mat. and fur. UB RAS, 2012, vol. 18, no.4, pp. 315–327 (in Russian).
15. Ligun A. A. Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve L2 [Some inequalities between best approximations and module of continuity in the space L2]. Matematicheskie zametki – Mathematical Notes, 1978, vol. 24, no. 6, pp.785–792 (in Russian).
16. Shabozov M. Sh., Yusupov G. A. Nailuchshie polinomial'nye priblizheniya v L2 nekotorykh klassov 2π-periodicheskikh funktsiy i tochnye znacheniya ikh poperechnikov [The best polynomial approximation in L2 of some classes of 2π-periodic functions and the exact values of their widths]. Matematicheskie zametki – Mathematical Notes, 2011, vol. 90, no. 5, pp.764–775 (in Russian).
17. Hardy G. G., Littlewood J. E. and Polya G. Inequality. Cambridge University Press. 2nd ed., 1952. 346 p.
18. Beckenbach E., Bellman R. Neravenstva [Inequality]. Moscov, Mir Publ., 1965. 276 p. (in Russian).
Issue: 2, 2015
Series of issue: Issue 2
Rubric: INTERDISCIPLINARY STUDIES
Pages: 213 — 220
Downloads: 973