Вестник Томского государственного педагогического университета
RU EN






Сегодня: 09.01.2026
Главная Выпуски журнала 2012 Год Выпуск №13 БРСТ ПОДХОД К КАЛИБРОВОЧНО-ИНВАРИАНТНЫМ ТЕОРИЯМ КОНФОРМНЫХ ПОЛЕЙ ВЫСШИХ СПИНОВ В ПЛОСКОМ ПРОСТРАНСТВЕ
  • Главная
  • Текущий выпуск
  • Выпуски журнала
    • 2025 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2024 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2023 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2022 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2021 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2020 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2019 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
    • 2018 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
    • 2017 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2016 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2015 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2014 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2013 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
      • Выпуск №13
    • 2012 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
      • Выпуск №13
    • 2011 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
      • Выпуск №13
    • 2010 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2009 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2008 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
    • 2007 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
    • 2006 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2005 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
    • 2004 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
    • 2003 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
    • 2002 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
    • 2001 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
    • 2000 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
    • 1999 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
    • 1998 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 1997 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
  • Поиск
  • Рейтинг
  • Новости
  • Редакционная коллегия
  • Правила для авторов
  • Порядок рецензирования
  • Читателям
  • Публикационная Этика Издания
  • Контактная информация
  • Разместить статью
  • Поступившие статьи
  • Принятые в печать
  • Оформить подписку
  • Служебный вход
vestnik.tspu.ru
praxema.tspu.ru
ling.tspu.ru
npo.tspu.ru
edujournal.tspu.ru

Вестник ТГПУ — это рецензируемый научный журнал открытого доступа.

E-LIBRARY (РИНЦ)
Ulrich's Periodicals Directory
Google Scholar
European reference index for the humanities and the social sciences (erih plus)
Поиск по автору
- Не выбрано -
  • - Не выбрано -
Яндекс.Метрика

БРСТ ПОДХОД К КАЛИБРОВОЧНО-ИНВАРИАНТНЫМ ТЕОРИЯМ КОНФОРМНЫХ ПОЛЕЙ ВЫСШИХ СПИНОВ В ПЛОСКОМ ПРОСТРАНСТВЕ

Таката Х.

Информация об авторе:

Предлагается замкнутая алгебра высших спинов и ее представление, которое воспроизводит конформно инвариантный лагранжиан, полученный Фрадкиным и Цейтлиным. Эта алгебра используется для построения калибровочно инвариантного лагранжиана с помощью БРСТ подхода. Лагранжиан, построенный с помощью метода БРСТ-конструкции не имеет ни связей вне массовой оболочки ни членов с высшими производным по сравнению с неконформным случаем. На примере спина 2 в четырех измерениях наш лагранжиан согласуется с тем, что следует из конформной гравитации с использованием калибровки и уравнений движений на вспомогательные поля.

Ключевые слова: высшие спины; БРСТ; конформная симметрия

Библиография:

[1] Singh L. P. S., Hagen C. R., Phys. Rev. D9 (1974) 898; Fronsdal C., Phys. Rev. D18 (1978) 3624.

[2] Buchbinder I. L., Krykhtin V. A. and Pashnev A., Nucl. Phys. B 711 (2005) 367; Buchbinder I. L. and Krykhtin V. A., Nucl. Phys. B 727 (2005) 537; Buchbinder I. L., Krykhtin V. A., Ryskina L. L. and Takata H., Phys. Lett. B 641 (2006) 386.

[3] Buchbinder I. L., Krykhtin V. A. and Takata H., Phys. Lett. B 656 (2007) 253; Moshin P. Y. and Reshetnyak A. A., JHEP 0710 (2007) 040.

[4] Fradkin E. S. and Tseytlin A. A., Phys. Rept.119 (1985) 233.

[5] Segal A. Y., Nucl. Phys. B664 (2003) 59.

[6] Metsaev R., JHEP 1201 (2012) 064; JHEP 1206 (2012) 062.

takata_h._.._155_158_13_128_2012.pdf ( 493.97 kB ) takata_h._.._155_158_13_128_2012.zip ( 392.97 kB )

Выпуск: 13, 2012

Серия выпуска: Выпуск № 13

Страницы: 155 — 158

Скачиваний: 1375

Для цитирования:


2026 Вестник Томского государственного педагогического университета

Разработка и поддержка: Лаборатория сетевых проектов ТГПУ