Вестник Томского государственного педагогического университета
RU EN






Сегодня: 08.12.2025
Главная Выпуски журнала 2014 Год Выпуск №12 КВАНТОВЫЕ БИЛЬЯРДЫ С БРАНАМИ
  • Главная
  • Текущий выпуск
  • Выпуски журнала
    • 2025 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2024 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2023 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2022 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2021 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2020 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 2019 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
    • 2018 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
    • 2017 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2016 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2015 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2014 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2013 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
      • Выпуск №13
    • 2012 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
      • Выпуск №13
    • 2011 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
      • Выпуск №13
    • 2010 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2009 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2008 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
    • 2007 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
    • 2006 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
      • Выпуск №10
      • Выпуск №11
      • Выпуск №12
    • 2005 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
    • 2004 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
    • 2003 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
    • 2002 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
    • 2001 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
    • 2000 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
      • Выпуск №8
      • Выпуск №9
    • 1999 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
      • Выпуск №7
    • 1998 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
      • Выпуск №4
      • Выпуск №5
      • Выпуск №6
    • 1997 Год
      • Выпуск №1
      • Выпуск №2
      • Выпуск №3
  • Рейтинг
  • Поиск
  • Новости
  • Редакционная коллегия
  • Правила для авторов
  • Порядок рецензирования
  • Читателям
  • Публикационная Этика Издания
  • Контактная информация
  • Разместить статью
  • Поступившие статьи
  • Принятые в печать
  • Оформить подписку
  • Служебный вход
vestnik.tspu.ru
praxema.tspu.ru
ling.tspu.ru
npo.tspu.ru
edujournal.tspu.ru

Вестник ТГПУ — это рецензируемый научный журнал открытого доступа.

E-LIBRARY (РИНЦ)
Ulrich's Periodicals Directory
Google Scholar
European reference index for the humanities and the social sciences (erih plus)
Поиск по автору
- Не выбрано -
  • - Не выбрано -
Яндекс.Метрика

КВАНТОВЫЕ БИЛЬЯРДЫ С БРАНАМИ

Иващук В. Д., Мельников В. Н.

Информация об авторе:

Рассмотрена космологическая модель типа Бианки-I в (n + 1)-мерной гравитационной теории с несколькими полями форм. В случае, когда принят анзатц с электрическими некомпозитными бранами, проанализировано уравнение Уилера-ДеВитта (УДВ), записанное в конформно-ковариантном виде. При определенных ограничениях найдены асимптотические решения уравнения УДВ вблизи сингулярности, которые сводят проблему к так называемому квантовому бильярду на (n − 1)-мерном пространстве Лобачевского H^n−1.

Ключевые слова: космологические бильярды, браны, уравнение Уилера-ДеВитта

Библиография:

[1] Chitre D. M. 1972 Ph. D. Thesis (University of Maryland).

[2] Belinskii V. A., Lifshitz E. M. and Khalatnikov I. M. 1970 Usp. Fiz. Nauk 102 463 [in Russian].

[3] Misner C. W. 1969 Phys. Rev. 186 1319.

[4] Ivashchuk V. D., Kirillov A. A. and Melnikov V. N. 1994 Russian Physics Journal 37 1102.

[5] Ivashchuk V. D. and Melnikov V. N. 1995 Class. Quantum Grav. 12 809.

[6] Ivashchuk V. D. and Melnikov V. N. 2000 J. Math. Phys. 41 634.

[7] Damour T., Henneaux M. and Nicolai H. 2003 20 R145.

[8] Kleinschmidt A., Koehn M. and Nicolai H. 2009 Phys. Rev. D 80 061701.

[9] Ivashchuk V. D. and Melnikov V. N. 1998 J. Math. Phys. 39 2866.

[10] Misner C. W. 1972 In Magic without Magic. John Archibald Wheeler, a collection of essays in honor of his sixtieth birthday ed. Klauder J. R. (Freeman, San Francisko).

[11] Ivashchuk V. D. and Melnikov V. N. 2013 Grav. Cosmol. 19 171.

[12] Ivashchuk V. D. and Melnikov V. N. 2014 Eur. Phys. J. C 74 2805.

ivashchuk_v._d._109_113_12_153_2014.pdf ( 624.5 kB ) ivashchuk_v._d._109_113_12_153_2014.zip ( 512.26 kB )

Выпуск: 12, 2014

Серия выпуска: Выпуск № 12

Страницы: 109 — 113

Скачиваний: 1325

Для цитирования:


© 2025 Вестник Томского государственного педагогического университета

Разработка и поддержка: Лаборатория сетевых проектов ТГПУ