Tomsk State Pedagogical University Bulletin
RU EN






Today: 14.12.2025
Home Search
  • Home
  • Current Issue
  • Bulletin Archive
    • 2025 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2024 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2023 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2022 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2021 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2020 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2019 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
    • 2018 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
    • 2017 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2016 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2015 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2014 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2013 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
      • Issue №13
    • 2012 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
      • Issue №13
    • 2011 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
      • Issue №13
    • 2010 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2009 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2008 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
    • 2007 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
    • 2006 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2005 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
    • 2004 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
    • 2003 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
    • 2002 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
    • 2001 Year
      • Issue №1
      • Issue №2
      • Issue №3
    • 2000 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
    • 1999 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
    • 1998 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 1997 Year
      • Issue №1
      • Issue №2
      • Issue №3
  • Search
  • Rating
  • News
  • Editorial Board
  • Information for Authors
  • Review Procedure
  • Information for Readers
  • Editor’s Publisher Ethics
  • Contacts
  • Manuscript submission
  • Received articles
  • Accepted articles
  • Subscribe
  • Service Entrance
vestnik.tspu.ru
praxema.tspu.ru
ling.tspu.ru
npo.tspu.ru
edujournal.tspu.ru

TSPU Bulletin is a peer-reviewed open-access scientific journal.

E-LIBRARY (РИНЦ)
Ulrich's Periodicals Directory
Google Scholar
European reference index for the humanities and the social sciences (erih plus)
Search by Author
- Not selected -
  • - Not selected -
Яндекс.Метрика

Search

- Not selected -
  • - Not selected -
  • - Not selected -

#SearchDownloads
1

THE ROLE OF BRST CHARGE AS A GENERATOR OF GAUGE TRANSFORMATIONS IN QUANTIZATION OF GAUGE THEORIES AND GRAVITY // Tomsk State Pedagogical University Bulletin. 2014. Issue 12 (153). P. 224-227

In the Batalin-Fradkin-Vilkovisky approach to quantization of gauge theories a principal role is given to the BRST charge which can be constructed as a series in Grassmannian (ghost) variables with coefficients given by generalized structure functions of constraints algebra. Alternatively, the BRST charge can be derived making use of the Noether theorem and global BRST invariance of the effective action. In the case of Yang-Mills fields the both methods lead to the same expression for the BRST charge, but it is not valid in the case of General Relativity. It is illustrated by examples of an isotropic cosmological model as well as by spherically-symmetric gravitational model which imitates the full theory of gravity much better. The consideration is based on Hamiltonian formulation of General Relativity in extended phase space. At the quantum level the structure of the BRST charge is of great importance since BRST invariant quantum states are believed to be physical states. Thus, the definition of the BRST charge at the classical level is inseparably related to our attempts to find a true way to quantize gravity.

Keywords: BRST charge, gauge transformations, Noether theorem, physical states, quantization of gravity

1815

2025 Tomsk State Pedagogical University Bulletin

Development and support: Network Project Laboratory TSPU