Tomsk State Pedagogical University Bulletin
RU EN






Today: 07.12.2025
Home Issues 2014 Year Issue №12 BRST-BFV LAGRANGIAN FORMULATIONS FOR HS FIELDS SUBJECT TO TWO-COLUMN YOUNG TABLEAUX
  • Home
  • Current Issue
  • Bulletin Archive
    • 2025 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2024 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2023 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2022 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2021 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2020 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2019 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
    • 2018 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
    • 2017 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2016 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2015 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2014 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2013 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
      • Issue №13
    • 2012 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
      • Issue №13
    • 2011 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
      • Issue №13
    • 2010 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2009 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2008 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
    • 2007 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
    • 2006 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2005 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
    • 2004 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
    • 2003 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
    • 2002 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
    • 2001 Year
      • Issue №1
      • Issue №2
      • Issue №3
    • 2000 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
    • 1999 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
    • 1998 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 1997 Year
      • Issue №1
      • Issue №2
      • Issue №3
  • Rating
  • Search
  • News
  • Editorial Board
  • Information for Authors
  • Review Procedure
  • Information for Readers
  • Editor’s Publisher Ethics
  • Contacts
  • Manuscript submission
  • Received articles
  • Accepted articles
  • Subscribe
  • Service Entrance
vestnik.tspu.ru
praxema.tspu.ru
ling.tspu.ru
npo.tspu.ru
edujournal.tspu.ru

TSPU Bulletin is a peer-reviewed open-access scientific journal.

E-LIBRARY (РИНЦ)
Ulrich's Periodicals Directory
Google Scholar
European reference index for the humanities and the social sciences (erih plus)
Search by Author
- Not selected -
  • - Not selected -
Яндекс.Метрика

BRST-BFV LAGRANGIAN FORMULATIONS FOR HS FIELDS SUBJECT TO TWO-COLUMN YOUNG TABLEAUX

Reshetnyak A. A.

Information About Author:

The details of Lagrangian description of irreducible integer higher-spin representations of the Poincare group with an Young tableaux Y [ˆs1, sˆ2] having 2 columns are considered for Bose particles propagated on an arbitrary dimensional Minkowski space-time. The procedure is based, first, on using of an auxiliary Fock space generated by Fermi oscillators (antisymmetric basis), second, on construction of the Verma module and finding auxiliary oscillator realization for sl(2)⊕sl(2) algebra which encodes the second-class operator constraints subsystem in the HS symmetry superalgebra. Application of an universal BRST-BFV approach permits to reproduce gauge-invariant Lagrangians with reducible gauge symmetries describing the free dynamics of both massless and massive mixed-antisymmetric bosonic fields of any spin with appropriate number of gauge and Stukelberg fields. The general prescription possesses by the possibility to derive constrained Lagrangians with only BRST-invariant extended algebraic constraints which describes the Poincare group irreducible representations in terms of mixed-antisymmetric tensor fields with 2 group indices.

Keywords: higher spins, BRST operator, Lagrangian formulation, Verma module, gauge invariance

References:

[1] Feldman D., Perez P. F. and Nath P. 2012 JHEP 1201 038.

[2] Sagnotti A., Tsulaia M. 2004 Nucl. Phys. B682 83.

[3] Vasiliev M. 2004 Fortsch. Phys. 52 702.

[4] Vasiliev M. 2015 Lect. Notes Phys. 892 227.

[5] Sorokin D. 2005 AIP Conf. Proc. 767 172.

[6] Fotopoulos A., Tsulaia M. 2008 Int. J. Mod. Phys. A. 24 1, [arXiv:0805.1346[hep-th]].

[7] Fradkin E. S., Vilkovisky G. A. 1975 Phys. Lett. B. 55 224; Batalin I. A., Fradkin E. S. 1983 Phys. Lett. B. 128 303.

[8] Burd´ık C., Boyarintceva N. and Reshetnyak A. In progress. ˇ

[9] Buchbinder I. L., Reshetnyak A. A., Takata H. In progress.

[10] Labastida J. M. F. 1989 Nucl. Phys. B. 322 185.

[11] Metsaev R. R. 1995 Phys. Lett. B. 354 78.

[12] Fronsdal C. 1978 Phys. Rev. D. 18 3624.

[13] Lopatin V. E., Vasiliev M. A. 1988 Mod. Phys. Lett. A 3 257.

[14] Skvortsov E. D. 2009 Nucl. Phys. B 808 569843

[15] Campoleoni A., Francia D., Mourad J., Sagnotti A. 2009 Nucl. Phys. B 815 289.

[16] Metsaev R. R. 2004 Phys. Lett. B. 590 95.

[17] Burdik C., Pashnev A., Tsulaia M. 2001 Mod. Phys. Lett. A 16 731.

[18] Buchbinder I., Krykhtin V., Takata H. 2007 Phys. Lett. B 656 253.

[19] Buchbinder I. L., Krykhtin V. A., Pashnev A. 2005 Nucl. Phys. B. 711 367, [arXiv:hep-th/0410215]

[20] Buchbinder I. L., Krykhtin V. A., Reshetnyak A. A. 2007 Nucl. Phys. B. 787 211.

[21] Moshin P. Yu., Reshetnyak A. A. 2007 JHEP 10 040, [arXiv:0707.0386[hep-th]].

[22] Buchbinder I. L. Reshetnyak A. A. 2012 Nucl. Phys. B 862 270.

[23] Reshetnyak A. A. 2013 Nucl. Phys. B 869 523270, [arXiv:1211.1273[hep-th]]

[24] Yu. M. Zinoviev, 2009 Nucl. Phys. B 821 21

[25] Alkalaev K. 2004 Theor. Math. Phys. 140 1253 [hep-th/0311212]

[26] Dixmier J. 1974 Algebres enveloppantes (Gauthier-Villars) Paris.

reshetnyak_a._a._213_218_12_153_2014.pdf ( 643.09 kB ) reshetnyak_a._a._213_218_12_153_2014.zip ( 591.13 kB )

Issue: 12, 2014

Series of issue: Issue 12

Pages: 213 — 218

Downloads: 1237

For citation:


© 2025 Tomsk State Pedagogical University Bulletin

Development and support: Network Project Laboratory TSPU