Tomsk State Pedagogical University Bulletin
RU EN






Today: 12.02.2026
Home Issues 2015 Year Issue №2 COMPONENT LAGRANGE FUNCTION MODIFICATION OF GENERAL DEFORMED CHIRAL AND ANTICHIRAL MODEL
  • Home
  • Current Issue
  • Bulletin Archive
    • 2026 Year
      • Issue №1
    • 2025 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2024 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2023 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2022 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2021 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2020 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 2019 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
    • 2018 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
    • 2017 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2016 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2015 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2014 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2013 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
      • Issue №13
    • 2012 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
      • Issue №13
    • 2011 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
      • Issue №13
    • 2010 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2009 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2008 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
    • 2007 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
    • 2006 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
      • Issue №10
      • Issue №11
      • Issue №12
    • 2005 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
    • 2004 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
    • 2003 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
    • 2002 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
    • 2001 Year
      • Issue №1
      • Issue №2
      • Issue №3
    • 2000 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
      • Issue №8
      • Issue №9
    • 1999 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
      • Issue №7
    • 1998 Year
      • Issue №1
      • Issue №2
      • Issue №3
      • Issue №4
      • Issue №5
      • Issue №6
    • 1997 Year
      • Issue №1
      • Issue №2
      • Issue №3
  • Search
  • Rating
  • News
  • Editorial Board
  • Information for Authors
  • Review Procedure
  • Information for Readers
  • Editor’s Publisher Ethics
  • Contacts
  • Manuscript submission
  • Received articles
  • Accepted articles
  • Subscribe
  • Service Entrance
vestnik.tspu.ru
praxema.tspu.ru
ling.tspu.ru
npo.tspu.ru
edujournal.tspu.ru

TSPU Bulletin is a peer-reviewed open-access scientific journal.

E-LIBRARY (РИНЦ)
Ulrich's Periodicals Directory
Google Scholar
European reference index for the humanities and the social sciences (erih plus)
Search by Author
- Not selected -
  • - Not selected -
Яндекс.Метрика

COMPONENT LAGRANGE FUNCTION MODIFICATION OF GENERAL DEFORMED CHIRAL AND ANTICHIRAL MODEL

Azorkina O.D.

Information About Author:

For visual interpretation of deformed non anticommutative N = 1/2 supersymmetric theories as a standard field models and distinctive features research of their dynamics it is necessary to output component Lagrange function formula of this theory effect. The definition of component structure of non anticommutative theory is quite an unconventional technical problem because of N = 1/2 non anticommutative deformation the given superspace and therefore requires special analysis. Let us study Lagrange function form of non anticommutative general superfield model of chiral and antichiral superfields on the base of deformed N = 1/2 non anticommutative superspace. The model is formulated in terms of undirected Kahler’s potential and chiral and antichiral superpotentials which were decomposed in series according to superfields with allowance for imputed deformation. They assay the analysis of component structure of deformed Lagrange function of the given model and find quite a simple and compact form fore register Lagrange function theory.

Keywords: supersymmetry, component action, chiral and antichiral model

References:

1. Douglass M. R., Nekrasov N. A. Noncommutative Field Theory. Reviews of Modern Physics, 2002, vol. 73, pp. 0977–1029.

2. Szabo R. J. Quantum Field Theory on Nonocommutative Spaces. Physical Reports, 2003, vol. 378, pp. 201–299.

3. Konechny A., Schwarz A. Introduction to M (atrix) theory and noncommutative geometry. Physical Reports, 2002, vol. 360, pp. 353–465.

4. Seiberg N. Nonocommutative Superspace N=1/2 Supersymmetry, Field Theory and String Theory. Journal of High Energy, Physics, 2003, vol. 0306, pp. 010–029.

5. Weyl H. Quantum mechanics and group theory. Zeitschrift fur Physik, 1927, vol. 46, pp. 001–262.

6. Wigner E. P. Quantum corrections for thermodynamics equilibrium. Physics Review, 1932, vol. 40, pp. 749–756.

7. Moyal J. E. Quantum mechanics as a statistical theory. Proceedings of the Cambridge Philosophical Society, 1949, vol. 45, pp. 099–124.

8. Azorkina O. D. Superpolevye metody issledovaniya deformirovannyh neantikommutativnyh modelej [Superfield methods of research of the deformed non-anticommutative models]. Vestnik Tomskogo gosudarstvennogo pedagogicheskogo universiteta – TSPU Bulletin, 2012, vol. 7 (122), pp. 40–48 (in Russian).

9. Buchbinder I. L., Kuzenko S. M. Ideas and Methods of Supersymmetry and Supergravity. IOP Publishing, Bristol and Philadelphia, 1998. 665 p.

10. Azorkina O. D. Klassicheskie i kvantovye aspekty obshchey modeli kiral’nogo-antikiral’nogo superpoley na deformirovannom superprostranstve [Classical and Quantum Aspects of Generic Chiral-Antichiral Superfield Model on Deformed Superspace]. Vestnik Tomskogo gosudarstvennogo pedagogicheskogo universiteta – TSPU Bulletin. 2006, vol. 6 (57), pp. 39–45 (in Russian).

11. Zumino B. Supersymmetry and Kahler manifold. Physics Letter B., 1979, vol. 87, pp. 203–206.

12. Alvarez-Gaume L., Vazquer-Mozo M. A. On nonanticommutative N=2 sigma-model in two dimensions. Journal of High Energy, Physics, 2005. vol. 0504, pp. 007–036.

13. Hatanaka T., Ketov S., Kobayashi Y., Sasaki S. Non-anticommutative Deformation of Effective Potentials in Supersymmetric Gauge Theories. Nuclear Physical B. 2055. vol. 716. pp. 088–104.

azorkina_o._d._232_235_2_155_2015.pdf ( 441.03 kB ) azorkina_o._d._232_235_2_155_2015.zip ( 433.8 kB )

Issue: 2, 2015

Series of issue: Issue 2

Rubric: INTERDISCIPLINARY STUDIES

Pages: 232 — 235

Downloads: 1159

For citation:


2026 Tomsk State Pedagogical University Bulletin

Development and support: Network Project Laboratory TSPU